- ULM128M
- LLMTI1B
- GEMINI2_NANOV2
- GEMINI2_NANOV2_EE2Q
- GEMINI_XS
- GEMINI_XS_DRAFTER_6LAYER_CAUSAL_USM_700M_RESIDUAL
- GEMINI_XS_LUSM_700M_RESIDUAL_BOTTOM15
- GEMINI2_NANOV2_EE12Q
- GEMINI2_NANOV2_EE2_LUSM_700M
- GEMINI2_NANOV2_CAUSAL_700M
- GEMINI2_NANOV2_EE20_CAUSAL_LUSM_700M
- GEMINI_XL_DRAFTER_24LAYER
- GEMINI_XS_FA1
- GEMMA2_8B
- GEMMA2_7B
- GEMMA2_2B
- GEMMA3_1B
- GEMMA3_4B
- GEMMA3_12B
- GEMMA3_27B
- STABLELM_4E1T_3B_PHI_2_TF_LITE
1. ULM128M
- Interpretation:
Likely a “Universal Language Model” with 128 million parameters. Common in smaller, efficient AI applications.
2. LLMIT1B
- Interpretation:
Large Language Model, Instruction-Tuned, 1 Billion parameters.- LLM: Large Language Model
- IT: Instruction-Tuned (fine-tuned to follow human instructions for chat, Q&A, etc.)
- 1B: 1 billion parameters
- Typical Use Case:
A compact, efficient instruction-following model designed for conversational agents, chatbots, and smart assistants—optimized for inference speed while maintaining the ability to understand and follow complex user instructions.
3. GEMINI2_NANOV2
- Interpretation:
“Gemini2” refers to Google’s Gemini model, with “NanoV2” being its second, smallest/efficient “Nano” version.
4. GEMINI2_NANOV2_EE2Q
- Interpretation:
A variant of Gemini2 NanoV2, probably quantized to a lower precision (e.g., 2-bit or Q for quantized), or “EE” could mean “Edge-Enhanced.”
5. GEMINI_XS
- Interpretation:
“Gemini Extra Small”—likely the smallest, most efficient Gemini variant.
6. GEMINI_XS_DRAFTER_6LAYER_CAUSAL_USM_700M_RESIDUAL
- Interpretation:
- “XS Drafter” = Gemini Extra Small, used for drafting (possibly text generation).
- “6Layer” = 6 transformer layers.
- “Causal” = Unidirectional, like GPT.
- “USM_700M” = Universal Sentence Model, 700M parameters.
- “Residual” = Uses residual connections for better training/stability.
7. GEMINI_XS_LUSM_700M_RESIDUAL_BOTTOM15
- Interpretation:
Similar to above, but “LUSM” could be a variant of the universal model, and “BOTTOM15” may mean it’s using the bottom 15 layers (or some layer selection trick).
8. GEMINI2_NANOV2_EE12Q
- Interpretation:
Gemini2 NanoV2, probably with Edge-Enhanced (EE) features and “12Q” indicating quantization at 12 bits or a quantization scheme.
9. GEMINI2_NANOV2_EE2_LUSM_700M
- Interpretation:
Another Gemini2 NanoV2 variant with Edge-Enhanced 2, using a LUSM 700M parameter model.
10. GEMINI2_NANOV2_CAUSAL_700M
- Interpretation:
Gemini2 NanoV2, causal (unidirectional), with 700M parameters.
11. GEMINI2_NANOV2_EE20_CAUSAL_LUSM_700M
- Interpretation:
Gemini2 NanoV2, Edge-Enhanced 20 (version or setting), causal, LUSM, 700M parameters.
12. GEMINI_XL_DRAFTER_24LAYER
- Interpretation:
“XL” = Extra Large variant.
“Drafter” = Possibly optimized for initial text generation or suggestion.
“24Layer” = 24 transformer layers.
13. GEMINI_XS_FA1
- Interpretation:
Gemini Extra Small, “FA1” could be “Fast Architecture 1” or a specific feature set/version.
14. GEMMA2_8B
- Interpretation:
Gemma model, version 2, with 8 billion parameters.
15. GEMMA2_7B
- Interpretation:
Gemma version 2, 7 billion parameters.
16. GEMMA2_2B
- Interpretation:
Gemma version 2, 2 billion parameters.
17. GEMMA3_1B
- Interpretation:
Gemma version 3, 1 billion parameters.
18. GEMMA3_4B
- Interpretation:
Gemma version 3, 4 billion parameters.
19. GEMMA3_12B
- Interpretation:
Gemma version 3, 12 billion parameters.
20. GEMMA3_27B
- Interpretation:
Gemma version 3, 27 billion parameters.
21. STABLELM_4E1T_3B_PHI_2_TF_LITE
- Interpretation:
- “StableLM” = Stable Language Model (by Stability AI).
- “4E1T” = Possibly a version or internal code.
- “3B” = 3 billion parameters.
- “PHI_2” = Possibly related to Microsoft’s Phi-2 model or a version.
- “TF_LITE” = TensorFlow Lite (optimized for mobile/edge deployment).
Leave a Reply