chrome source

There’s a small army of on-device models coming to Chrome

  1. ULM128M
  2. LLMTI1B
  3. GEMINI2_NANOV2
  4. GEMINI2_NANOV2_EE2Q
  5. GEMINI_XS
  6. GEMINI_XS_DRAFTER_6LAYER_CAUSAL_USM_700M_RESIDUAL
  7. GEMINI_XS_LUSM_700M_RESIDUAL_BOTTOM15
  8. GEMINI2_NANOV2_EE12Q
  9. GEMINI2_NANOV2_EE2_LUSM_700M
  10. GEMINI2_NANOV2_CAUSAL_700M
  11. GEMINI2_NANOV2_EE20_CAUSAL_LUSM_700M
  12. GEMINI_XL_DRAFTER_24LAYER
  13. GEMINI_XS_FA1
  14. GEMMA2_8B
  15. GEMMA2_7B
  16. GEMMA2_2B
  17. GEMMA3_1B
  18. GEMMA3_4B
  19. GEMMA3_12B
  20. GEMMA3_27B
  21. STABLELM_4E1T_3B_PHI_2_TF_LITE

1. ULM128M

  • Interpretation:
    Likely a “Universal Language Model” with 128 million parameters. Common in smaller, efficient AI applications.

2. LLMIT1B

  • Interpretation:
    Large Language Model, Instruction-Tuned, 1 Billion parameters.
    • LLM: Large Language Model
    • IT: Instruction-Tuned (fine-tuned to follow human instructions for chat, Q&A, etc.)
    • 1B: 1 billion parameters
  • Typical Use Case:
    A compact, efficient instruction-following model designed for conversational agents, chatbots, and smart assistants—optimized for inference speed while maintaining the ability to understand and follow complex user instructions.

3. GEMINI2_NANOV2

  • Interpretation:
    “Gemini2” refers to Google’s Gemini model, with “NanoV2” being its second, smallest/efficient “Nano” version.

4. GEMINI2_NANOV2_EE2Q

  • Interpretation:
    A variant of Gemini2 NanoV2, probably quantized to a lower precision (e.g., 2-bit or Q for quantized), or “EE” could mean “Edge-Enhanced.”

5. GEMINI_XS

  • Interpretation:
    “Gemini Extra Small”—likely the smallest, most efficient Gemini variant.

6. GEMINI_XS_DRAFTER_6LAYER_CAUSAL_USM_700M_RESIDUAL

  • Interpretation:
    • “XS Drafter” = Gemini Extra Small, used for drafting (possibly text generation).
    • “6Layer” = 6 transformer layers.
    • “Causal” = Unidirectional, like GPT.
    • “USM_700M” = Universal Sentence Model, 700M parameters.
    • “Residual” = Uses residual connections for better training/stability.

7. GEMINI_XS_LUSM_700M_RESIDUAL_BOTTOM15

  • Interpretation:
    Similar to above, but “LUSM” could be a variant of the universal model, and “BOTTOM15” may mean it’s using the bottom 15 layers (or some layer selection trick).

8. GEMINI2_NANOV2_EE12Q

  • Interpretation:
    Gemini2 NanoV2, probably with Edge-Enhanced (EE) features and “12Q” indicating quantization at 12 bits or a quantization scheme.

9. GEMINI2_NANOV2_EE2_LUSM_700M

  • Interpretation:
    Another Gemini2 NanoV2 variant with Edge-Enhanced 2, using a LUSM 700M parameter model.

10. GEMINI2_NANOV2_CAUSAL_700M

  • Interpretation:
    Gemini2 NanoV2, causal (unidirectional), with 700M parameters.

11. GEMINI2_NANOV2_EE20_CAUSAL_LUSM_700M

  • Interpretation:
    Gemini2 NanoV2, Edge-Enhanced 20 (version or setting), causal, LUSM, 700M parameters.

12. GEMINI_XL_DRAFTER_24LAYER

  • Interpretation:
    “XL” = Extra Large variant.
    “Drafter” = Possibly optimized for initial text generation or suggestion.
    “24Layer” = 24 transformer layers.

13. GEMINI_XS_FA1

  • Interpretation:
    Gemini Extra Small, “FA1” could be “Fast Architecture 1” or a specific feature set/version.

14. GEMMA2_8B

  • Interpretation:
    Gemma model, version 2, with 8 billion parameters.

15. GEMMA2_7B

  • Interpretation:
    Gemma version 2, 7 billion parameters.

16. GEMMA2_2B

  • Interpretation:
    Gemma version 2, 2 billion parameters.

17. GEMMA3_1B

  • Interpretation:
    Gemma version 3, 1 billion parameters.

18. GEMMA3_4B

  • Interpretation:
    Gemma version 3, 4 billion parameters.

19. GEMMA3_12B

  • Interpretation:
    Gemma version 3, 12 billion parameters.

20. GEMMA3_27B

  • Interpretation:
    Gemma version 3, 27 billion parameters.

21. STABLELM_4E1T_3B_PHI_2_TF_LITE

  • Interpretation:
    • “StableLM” = Stable Language Model (by Stability AI).
    • “4E1T” = Possibly a version or internal code.
    • “3B” = 3 billion parameters.
    • “PHI_2” = Possibly related to Microsoft’s Phi-2 model or a version.
    • “TF_LITE” = TensorFlow Lite (optimized for mobile/edge deployment).

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *