-
Advanced Interpretability Techniques for Tracing LLM Activations
Activation Logging and Internal State Monitoring One foundational approach is activation logging, which involves recording the internal activations (neuron outputs, attention patterns, etc.) of a model during its forward pass. By inspecting these activations, researchers can identify which parts of the network are highly active or contributing to a given output. Many open-source transformer models…
-
Temperature Parameter for Controlling AI Randomness
The Temperature parameter is a crucial setting used in generative AI models, such as large language models (LLMs), to influence the randomness and perceived creativity of the generated output. It directly affects the probability distribution of potential next words. Understanding the Basics What the Temperature Value Does In Practical Terms Using the sentence “The cat sat on…
-
Probability Threshold for Top-p (Nucleus) Sampling
The “Probability Threshold for Top-p (Nucleus) Sampling” is a parameter used in generative AI models, like large language models (LLMs), to control the randomness and creativity of the output text. Here’s a breakdown of what it does: Understanding the Basics What the Threshold Value Does In Practical Terms Imagine you’re asking the model to complete…
-
How Google Decides When to Use Gemini Grounding for User Queries
Google’s Gemini models are designed to provide users with accurate, timely, and trustworthy responses. A key innovation in this process is grounding, the ability to enhance model responses by anchoring them to up-to-date information from Google Search. However, not every query benefits from grounding, and Google has implemented a smart mechanism to decide when to…
-
Cross-Model Circuit Analysis: Gemini vs. Gemma Comparison Framework
1. Introduction Understanding the similarities and differences in how different large language models represent and prioritize brand information can provide crucial insights for developing robust, transferable brand positioning strategies. This framework outlines a systematic approach for comparative circuit analysis between Google’s Gemini and Gemma model families, with the goal of identifying universal brand-relevant circuits and…
-
Neural Circuit Analysis Framework for Brand Mention Optimization
Leveraging Open-Weight Models for Mechanistic Brand Positioning 1. Introduction While our previous methodology treated language models as black boxes, open-weight models like Gemma 3 Instruct provide unprecedented opportunities for direct observation and manipulation of internal model mechanics. This framework extends our previous methodology by incorporating direct neural circuit analysis, allowing for precise identification and targeting…
-
Strategic Brand Positioning in LLMs: A Methodological Framework for Prompt Engineering and Model Behavior Analysis
Abstract This paper presents a novel methodological framework for systematically analyzing and optimizing the conditions under which large language models (LLMs) generate favorable brand mentions. By employing a structured probing technique that examines prompt variations, completion thresholds, and linguistic pivot points, this research establishes a replicable process for identifying high-confidence prompting patterns. The methodology enables…
-
AlexNet: The Deep Learning Breakthrough That Reshaped Google’s AI Strategy
When Google, in collaboration with the Computer History Museum, open-sourced the original AlexNet source code, it marked a significant moment in the history of artificial intelligence. AlexNet was more than just an academic breakthrough; it was the tipping point that launched deep learning into mainstream AI research and reshaped the future of companies like Google.…
-
The Next Chapter of Search: Get Ready to Influence the Robots
It’s an exciting time to be in SEO. Honestly, it feels like 2006 all over again – a period of rapid change, innovation, and frankly, a whole lot of fun. For a while there, things had gotten a little… predictable. Technical SEO, keyword research, competitor analysis, link building, schema… it was all necessary, of course,…
-
Revealed: The exact search result data sent to Google’s AI.
UPDATE: Addressing guardrails, hallucinations and context size. 1. People are reporting difficulties in recreating the output due to guardrails and hallucinations. 2. Snippet context sometimes grows to several chunks. Guardrails Google attempts (and in many cases) succeeds at blocking these requests, but it does so in a very clumsy way so that we actually get…