Category: Google
-
Chrome’s New Embedding Model: Smaller, Faster, Same Quality
TL;DR Discovery and Extraction During routine analysis of Chrome’s binary components, I discovered a new version of the embedding model in the browser’s optimization guide directory. This model is used for history clustering and semantic search. Model directory: Technical Analysis Methodology To analyze the models, I developed a multi-faceted testing approach: Key Findings 1. Architecture…
-
I think Google got it wrong with “Generate → Ground” approach.
Grounding Should Come Before Generation Google’s RARR (Retrofit Attribution using Research and Revision) is a clever but fragile Band‑Aid for LLM hallucinations. Today I want to zoom out and contrast that generate → ground philosophy with a retrieval‑first alternative that’s already proving more robust in production. Quick Recap: What RARR Tries to Do Great for retro‑fitting citations onto an existing model;…
-
Introducing Grounding Classifier
Using the same tech behind AI Rank, we prompted Google’s latest Gemini 2.5 Pro model with search grounding enabled in the API request. A total of 10,000 prompts were collected and analysed to determine the grounding status of the prompt. The resulting data was then used to train a replica of Google’s internal classifier which…
-
How Google Decides When to Use Gemini Grounding for User Queries
Google’s Gemini models are designed to provide users with accurate, timely, and trustworthy responses. A key innovation in this process is grounding, the ability to enhance model responses by anchoring them to up-to-date information from Google Search. However, not every query benefits from grounding, and Google has implemented a smart mechanism to decide when to…
-
Cross-Model Circuit Analysis: Gemini vs. Gemma Comparison Framework
1. Introduction Understanding the similarities and differences in how different large language models represent and prioritize brand information can provide crucial insights for developing robust, transferable brand positioning strategies. This framework outlines a systematic approach for comparative circuit analysis between Google’s Gemini and Gemma model families, with the goal of identifying universal brand-relevant circuits and…
-
Neural Circuit Analysis Framework for Brand Mention Optimization
Leveraging Open-Weight Models for Mechanistic Brand Positioning 1. Introduction While our previous methodology treated language models as black boxes, open-weight models like Gemma 3 Instruct provide unprecedented opportunities for direct observation and manipulation of internal model mechanics. This framework extends our previous methodology by incorporating direct neural circuit analysis, allowing for precise identification and targeting…
-
Strategic Brand Positioning in LLMs: A Methodological Framework for Prompt Engineering and Model Behavior Analysis
Abstract This paper presents a novel methodological framework for systematically analyzing and optimizing the conditions under which large language models (LLMs) generate favorable brand mentions. By employing a structured probing technique that examines prompt variations, completion thresholds, and linguistic pivot points, this research establishes a replicable process for identifying high-confidence prompting patterns. The methodology enables…
-
AlexNet: The Deep Learning Breakthrough That Reshaped Google’s AI Strategy
When Google, in collaboration with the Computer History Museum, open-sourced the original AlexNet source code, it marked a significant moment in the history of artificial intelligence. AlexNet was more than just an academic breakthrough; it was the tipping point that launched deep learning into mainstream AI research and reshaped the future of companies like Google.…
-
The Next Chapter of Search: Get Ready to Influence the Robots
It’s an exciting time to be in SEO. Honestly, it feels like 2006 all over again – a period of rapid change, innovation, and frankly, a whole lot of fun. For a while there, things had gotten a little… predictable. Technical SEO, keyword research, competitor analysis, link building, schema… it was all necessary, of course,…
-
Revealed: The exact search result data sent to Google’s AI.
UPDATE: Addressing guardrails, hallucinations and context size. 1. People are reporting difficulties in recreating the output due to guardrails and hallucinations. 2. Snippet context sometimes grows to several chunks. Guardrails Google attempts (and in many cases) succeeds at blocking these requests, but it does so in a very clumsy way so that we actually get…